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Systems Biology

Systems biology is a method of study where the goal is to understand
how the parts of a biological system interact to yield the behavior of

the system as a coherent whole (Iyengar et al., 2004).

? Different levels of study: cells, organs, organisms, and populations.

? Ultimate goal is to develop a complete model of a living organism.

? The field is comprised of researchers from several different backgrounds.

? So mathematical models need to be accessible to experimentalists.
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Scaling-Up to Systems Biology

(Westerhoff and Palsson, 2004)
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Aspects of Biochemical Networks

? Biochemical networks can be very large and complex =⇒
many models are developed for small subsets of the overall network.

? Living organisms interact with their environment =⇒
difference between closed and open (living and dead) systems.

? There are many other factors to consider when building a model =⇒
mutations or gene deletions, dynamic responses to perturbations, effects of
small numbers of molecules.

? We would like to be able to do in silico experiments with our models.
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Unlike classical mechanics in physics, this field does not have the luxury of a
long history of research because attempts to develop a general basis for a
mathematical description of living organisms have only been made in recent
decades.

? The Law of Mass Action:

? Wilhelmy (1850) measured the velocity of mutarotation of simple sugars.
? Waage and Guldberg (1864, 1867) assumed reversibility of each

elementary reaction and identified the ’forward’ and ’reverse’ rates.
? Harcourt and Esson (1866) discovered the law independently.

? Michaelis–Menten Enzyme Kinetics:

? Named after Michaelis and Menten (1913).

? Nonequilibrium Thermodynamics:

? Influential work by Onsager (1931) and Hill (1989).
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The Law of Mass Action

For a system involving M reactions and N chemical species with jth reaction
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A closed system will go to equilibrium, whereas an open system will go to a
nonequilibrium steady state (NESS).
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Detailed Balance

When in equilibrium, the forward and reverse fluxes are equal
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Open, Living Systems

Starting with the original mass-action kinetics
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the detailed balance conditions can be broken by incorporating external input
and output fluxes
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Michaelis–Menten Enzyme Kinetics

For enzyme-catalyzed reactions, represented as

S + E
k1
+
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+−→ E + P,

we can make the quasi-steady-state assumption that
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s · e
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,

where KM,s is known as the Michaelis–Menten rate constant.
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.
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Reversible Michaelis–Menten Enzyme Kinetics

For
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Nonequilibrium Thermodynamics

The chemical potential of a species is given by

µi = µo
i + RT lnxi,

from which we get the reaction potential, given by
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∆µj ≥ 0

and, for a closed loop of reactions j1 → j2 → · · · → jz → j1,

∆µj1 + ∆µj2 + · · ·+ ∆µjz = 0.
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Limitations of Classical Methods

? Typically, the biochemical networks of interest are very large and complex.
As a result, it is extremely difficult to solve for analytic solutions of the
models. If they can be found, general solutions for particular types of
networks can be very important.

? It is quite common that the chemical species of a system are only available
in small numbers. In such cases, deterministic models are not valid and
stochastic models are needed to capture the effects of intrinsic fluctuations.

? Experimentalists are limited in the amount of information they can gather
and, in most cases, it is not possible to obtain detailed kinetic-rate
information. Therefore, methods that avoid having to know this information
are needed.
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Outline
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Stochastic Chemical Kinetics

? The mathematical basis for this approach is the discrete-state,
continuous-time Markov process, also known as the (chemical) master
equation approach.

? Kurtz (1972) proved, by properly taking the volume of the system into
account, that the deterministic ODE model is the infinite limit of the Markov
chain model.

? There are state-tracking approaches, such as the single-molecule NESS
studies from the work of Hill (1989), and there are number-tracking
approaches, such as the simulation methods developed by Gillespie
(1977).

? Before now, analytic solutions were not available for models that
considered explicit material exchange between the system and its
surroundings. Using the grand canonical model, we can obtain such
solutions for unimolecular reaction networks.
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The Closed Network Model

Consider an irreducible system of monomolecular biochemical reactions
involving N reactants. The dynamics of a single molecule can be modeled as
a Markov jump process or random walk, where

dpi(t)
dt

=
N∑

j=1

j 6=i

(pj(t)qj,i − pi(t)qi,j) .

If there are a total of n molecules in the closed system, then we have the joint
probability

P (n1, n2, . . . , nN , t) =
n!

n1!n2! · · ·nN !
(p1(t))

n1 (p2(t))
n2 · · · (pN(t))nN ,

i.e., the multinomial distribution.
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Closed Network ⇐⇒ Equilibrium

If the system is closed to its surroundings, it will achieve equilibrium where
each reaction must be detailed balanced. Let πi represent the probability of
being in state i at equilibrium, then

πi

πj
=

qj,i

qi,j
= Keq

and, for a closed loop of reactions i0 → i1 → · · · → im → i0,

qi0,i1qi1,i2 · · · qim,i0

qi1,i0qi2,i1 · · · qi0,im

= 1.

The detailed balance conditions can be broken for open systems by fixing
external concentrations that are typically absorbed into pseudo-first-order
transition rate constants.
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The Grand Canonical Model

Suppose there is an observer doing work on the system by keeping the
number of molecules in state 0 equal to n0 and the number in state N + 1
equal to nN+1. The total number of molecules in this system will fluctuate with
the expected number of molecules, 〈ni(t)〉, at time t in state i satisfying

d 〈ni(t)〉
dt

=
N+1∑
j=0

j 6=i

(〈nj(t)〉 qj,i − 〈ni(t)〉 qi,j)

∀i ∈ {1, 2, . . . , N} with 〈n0(t)〉 = n0 and 〈nN+1(t)〉 = nN+1. The system is
assumed to be empty initially, so the initial conditions are

ICs: 〈ni(0)〉 = 0, ∀i ∈ {1, 2, . . . , N}.

This system is actively exchanging material with its surroundings and will go
to a NESS.
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Variances and Covariances of the Open System

Let 〈ni〉∗ be the number of molecules in state i when the system is in NESS
and ∆ni , ni − 〈ni〉∗. It can be shown that the variances and covariances
must satisfy

d
〈
(∆ni(t))2

〉
dt

=
N+1∑
j=0

j 6=i

[(〈nj(t)〉+ 2 〈∆ni(t)∆nj(t)〉) qj,i

+
(
〈ni(t)〉 − 2

〈
(∆ni(t))2

〉)
qi,j

]
d 〈∆ni(t)∆nj(t)〉

dt
=

N+1∑
k=0
k 6=i

(〈∆nj(t)∆nk(t)〉 qk,i − 〈∆ni(t)∆nj(t)〉 qi,k)

+
N+1∑
k=0
k 6=j

(〈∆ni(t)∆nk(t)〉 qk,j − 〈∆ni(t)∆nj(t)〉 qj,k)

− 〈ni(t)〉 qi,j − 〈nj(t)〉 qj,i.
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The Analytic Solution of the Open System

Using
d 〈ni(t)〉

dt
=

N+1∑
j=0

j 6=i

(〈nj(t)〉 qj,i − 〈ni(t)〉 qi,j) ,

we obtain the solution of the chemical master equation for the open system,
which is given by the joint probability

P (n1, n2, . . . , nN , t) =
N∏

i=1

[
〈ni(t)〉ni

ni!
e−〈ni(t)〉

]
.

This solution shows that the numbers of molecules in each state are
independent and the corresponding random variables each have Poisson
distributions.
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The Homogeneous System

The nonhomogeneous system of equations can be rewritten as a
homogeneous system of equations by substituting ni(t) = ∆ni(t) + 〈ni〉∗. In
matrix form, the resulting system is written as

d 〈∆n(t)〉
dt

= Q 〈∆n(t)〉 ,

where

Q =


−
∑N+1

j=0 q1,j q2,1 q3,1 · · · qN,1

q1,2 −
∑N+1

j=0 q2,j q3,2 · · · qN,2
... . . . ...

q1,N−1 q2,N−1 · · · −
∑N+1

j=0 qN−1,j qN,N−1

q1,N q2,N · · · qN−1,N −
∑N+1

j=0 qN,j

 .
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Correlation Functions and Reaction Fluxes

Using the solution of the homogeneous system, we get the autocorrelation
and cross-correlation functions

〈∆ni(t)∆ni(0)〉 =eQt
i,i 〈ni〉∗ =

N∑
k=1

(
Vi,ke

λktV−1
k,i 〈ni〉∗

)

〈∆nj(t)∆ni(0)〉 =eQt
j,i 〈ni〉∗ =

N∑
k=1

(
Vj,ke

λktV−1
k,i 〈ni〉∗

)
.

From the cross-correlation functions, we can get the NESS flux of a reaction,
as well as the one-way fluxes.

lim
t→0

〈∆nj(t)∆ni(0)〉 − 〈∆ni(t)∆nj(0)〉
t

= qi,j 〈ni〉∗ − qj,i 〈nj〉∗ .
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A Simple Example

Consider
0

q0,1



q1,0

1
q1,2



q2,1

2
q2,3−→ 3,

for which we have the master equation

dP (n1, n2, t)
dt

= P (n1 − 1, n2, t)q0,1n0 + P (n1, n2 + 1, t)q2,3(n2 + 1)

+ P (n1 + 1, n2, t)q1,0(n1 + 1)

+ P (n1 + 1, n2 − 1, t)q1,2(n1 + 1)

+ P (n1 − 1, n2 + 1, t)q2,1(n2 + 1)

− P (n1, n2, t) (q0,1n0 + (q1,0 + q1,2)n1 + (q2,1 + q2,3)n2) ,

with solution

P (n1, n2, t) =
〈n1(t)〉n1

n1!
e−〈n1(t)〉〈n2(t)〉n2

n2!
e−〈n2(t)〉.



HEUETT, FINAL EXAM 24

A Simple Example

At NESS,

〈n1〉∗ =
q0,1(q2,1 + q2,3)n0

q1,0(q2,1 + q2,3) + q1,2q2,3

〈n2〉∗ =
q0,1q1,2n0

q1,0(q2,1 + q2,3) + q1,2q2,3
,

〈
(∆n1)2

〉∗
= 〈n1〉∗ ,

〈
(∆n2)2

〉∗
= 〈n2〉∗ , 〈∆n1∆n2〉∗ = 0,

and

P (n1, n2) =

(
〈n1〉∗

)n1

n1!
e−〈n1〉∗

(
〈n2〉∗

)n2

n2!
e−〈n2〉∗.
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A Simple Example

The autocorrelation and cross-correlation function are

〈∆n1(0)∆n1(t)〉 =
〈n1〉∗

λ1 − λ2

(
(λ1 + q1,0 + q1,2)eλ2t − (λ2 + q1,0 + q1,2)eλ1t

)
〈∆n2(0)∆n2(t)〉 =

〈n2〉∗

λ1 − λ2

(
(λ1 + q2,1 + q2,3)eλ2t − (λ2 + q2,1 + q2,3)eλ1t

)
〈∆n1(0)∆n2(t)〉 =

q1,2 〈n1〉∗

λ1 − λ2

(
eλ1t − eλ2t

)
〈∆n2(0)∆n1(t)〉 =

q2,1 〈n2〉∗

λ1 − λ2

(
eλ1t − eλ2t

)
.

From the cross-correlation functions we get

lim
t→0

〈∆n1(0)∆n2(t)〉 − 〈∆n2(0)∆n1(t)〉
t

= q1,2 〈n1〉∗ − q2,1 〈n2〉∗ .
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The Equilibrium Grand Canonical Ensemble

Suppose the source and the sink are one and the same. Let state 0 be that
state and suppose there are N internal states. Then the total number of
particles in the system are given with probability

P (n) ∝ Q(β, n)
n!

eβµn,

The quantum-mechanical canonical partition function, Q(β, n), is

Q(β, 1) ,
N∑

i=0

e−βEi

for n = 1 and
Q(β, n) = (Q(β, 1))n

for general n.
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The Equilibrium Grand Canonical Ensemble

The normalizing condition for the grand canonical ensemble yields the grand
canonical partition function

Ξ(β, µ) =
∞∑

n=0

Q(β, n)
n!

eβµn

= eQ(β,1)eβµ
,

Ξ(β, µ) is related to thermodynamics by PV = kBT ln Ξ(β, µ), from which the
general differential d(PV ) = SdT + PdV + 〈n〉eq

dµ gives

〈n〉eq = Q(β, 1)eβµ

µ = kBT ln 〈n〉eq − kBT lnQ(β, 1).
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The Equilibrium Grand Canonical Ensemble

The probability that there are n particles in the system is

P (n) =

(
Q(β, 1)eβµ

)n
n!

e−Q(β,1)eβµ
=

(〈n〉eq)n

n!
e−〈n〉

eq

The grand canonical model gives

P (n0, n1, . . . , nN) =
N∏

i=0

[
(〈ni〉eq)ni

ni!
e−〈ni〉eq

]
.

These results are related to each other by

P (n) =
∑

n0,n1,...,nN≥0
n0+n1+···+nN=n

P (n0, n1, . . . , nN) =
(〈n〉eq)n

n!
e−〈n〉

eq

,

where 〈n〉eq = 〈n0〉eq + 〈n1〉eq + · · ·+ 〈nN〉eq.
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The Kolmogorov Equations

From the Kolmogorov forward equation

d 〈ni(t)〉
dt

=
N+1∑
j=0

j 6=i

(〈nj(t)〉 qj,i − 〈ni(t)〉 qi,j) ,

we get the associated backward equation

dui(t)
dt

=
N+1∑
j=0

j 6=i

[(uj(t)− ui(t)) qi,j] ∀i ∈ {1, 2, . . . , N}

ICs: ui(0) = 0, ∀i ∈ {1, 2, . . . , N},

where u0(t) = 1, uN+1(t) = nN+1
n0

π0
πN+1

, and

ui(t) =
〈ni(t)〉

n0

π0

πi
.
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The Grand Canonical Model and Thermodynamics

The substitution allows for a physically meaningful potential function to be
defined as

µi(t) , lnui(t) = − ln
πi

π0
+ ln 〈ni(t)〉 − lnn0

and the chemical potential difference for a reaction between states i and j is

∆µi,j(t) = µi(t)− µj(t) = ln
〈ni(t)〉 qi,j

〈nj(t)〉 qj,i
= ln

Ji,j(t)
Jj,i(t)

.

It follows that

(Ji,j(t)− Jj,i(t))∆µi,j(t) = (Ji,j(t)− Jj,i(t)) ln
Ji,j(t)
Jj,i(t)

≥ 0,

which is equivalent to the second law of thermodynamics.
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The Reaction Conductance

In terms of the chemical affinity, u(t) = eµ(t), we have

∆ui,j(t) = ui(t)− uj(t) =
〈ni(t)〉π0

n0πi
− 〈nj(t)〉π0

n0πj
=

Ji,j(t)− Jj,i(t)
n0πiqi,j

π0

in which case

(Ji,j(t)− Jj,i(t))∆ui,j(t) =
(Ji,j(t)− Jj,i(t))

2

n0πiqi,j
π0 ≥ 0.

This result bears a likeness to the linear Ohm’s Law of electrical circuit theory.
Considering this, a reaction conductance can be defined as

ci,j ,
Ji,j(t)− Jj,i(t)

∆ui,j(t)
=

n0πiqi,j

π0
= cj,i.
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Analogies to Random Walks

The system

dui(t)
dt

=
N+1∑
j=0

j 6=i

[(uj(t)− ui(t)) qi,j] ∀i ∈ {1, 2, . . . , N}

ICs: ui(0) = 0, ∀i ∈ {1, 2, . . . , N}

with u0(t) = 1 and uN+1(t) = 0 is equivalent to a random walk, where ui(t) is
the expected number of times a walk, starting at state i at time t = 0, reaches
state 0 before reaching state N + 1 and does so before time t has passed
(Kelly, 1979).

Furthermore, when this system is in NESS, it is equivalent to an absorbing
Markov chain and we can suggest a novel experimental method for measuring
chemical affinities.
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Discussion of the Grand Canonical Model

? The grand canonical model provides many important results that can be
useful in studying reaction systems that actively exchange materials with
their surroundings.

? The chemical species of a physical system may only be present in small
numbers, which would negate the use of mass action kinetics.

? One of the most important results from this model is that the joint probability
function of the number of molecules in each state can be found analytically.

? We are able to derive clear definitions of reaction potentials and
conductances and suggest novel experimental methods to measure NESS
fluxes and affinities.
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Outline

? Background and motivation for the new modeling methods.

? The grand canonical model.

? Stochastic simulation algorithms.

? Stoichiometric constraints-based optimization approaches.

? Conclusions.
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? Most biochemical networks are very complex and it is not possible to obtain
analytic solutions when modeling them. For this reason, we turn to
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Stochastic Simulations

? Most biochemical networks are very complex and it is not possible to obtain
analytic solutions when modeling them. For this reason, we turn to
stochastic simulation algorithms.

? Again, the mathematical basis for this approach is the discrete-state,
continuous-time Markov process, also known as the (chemical) master
equation approach.

? Gillespie (1976) developed an influential, exact method for simulating these
networks.

? Other approximation methods have been developed to streamline the
simulations and reduce computational overhead.



HEUETT, FINAL EXAM 36

The Chemical Master Equation

The master equation is the time-evolution equation for the function P (n, t),
where ni is the number of molecules of species Xi in a well-mixed volume.
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The Chemical Master Equation

The master equation is the time-evolution equation for the function P (n, t),
where ni is the number of molecules of species Xi in a well-mixed volume. If
there are M different reactions (events) then we have

P (n, t + dt) = P (n, t)P (there is no change within dt)

+
M∑

µ=1

P (n− sµ, t)P (reaction µ occurs within dt),

= P (n, t)

1−
M∑

µ=1

aµ(n)dt

+
M∑

µ=1

P (n− sµ, t)aµ(n− sµ)dt,

where aµ(n)dt is the probability that reaction µ will occur in (t, t + dt) given
that the system is in state n at time t and sµ is a stoichiometric vector defining
the result of reaction µ.
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The Chemical Master Equation

The master equation is the time-evolution equation for the function P (n, t),
where ni is the number of molecules of species Xi in a well-mixed volume. If
there are M different reactions (events) then we have

P (n, t + dt) = P (n, t)P (there is no change within dt)

+
M∑

µ=1

P (n− sµ, t)P (reaction µ occurs within dt),

= P (n, t)

1−
M∑

µ=1

aµ(n)dt

+
M∑

µ=1

P (n− sµ, t)aµ(n− sµ)dt,

where aµ(n)dt is the probability that reaction µ will occur in (t, t + dt) given
that the system is in state n at time t and sµ is a stoichiometric vector defining
the result of reaction µ. From this we get

dP (n, t)
dt

=
M∑

µ=1

aµ(n− sµ)P (n− sµ, t)− aµ(n)P (n, t).
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So we ask: “When will the next event occur and what type of event will it be?”
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The Reaction Probability Density Function

So we ask: “When will the next event occur and what type of event will it be?”

Define

P (τ, µ)dτ ≡probability at time t that the next event will occur

in the differential time interval (t + τ, t + τ + dτ)

and will be a type µ event,

where 0 ≤ τ < ∞ and µ simply indicates what type of event occurs.

This joint probability density function can be written as

P (τ, µ)dτ = P0(τ)aµdτ = a0e
−a0τ

(
aµ

a0

)
dτ = P (τ)P (µ)dτ

where P0(τ) is the probability that no event occurs in the time interval (t, t + τ).
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Schematic of the Density Function

(Gillespie, 1976)
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The Gillespie Algorithm

P (τ) = a0e
−a0τ −→ F (τ) = 1− e−a0τ

P (µ) =
aµ

a0
−→ F (µ) =

µ∑
k=1

P (k)
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The Gillespie Algorithm

P (τ) = a0e
−a0τ −→ F (τ) = 1− e−a0τ

P (µ) =
aµ

a0
−→ F (µ) =

µ∑
k=1

P (k)

So choose r1 and r2 from uniform distribution in the unit interval and

τ =
1
a0

ln
(

1
r1

)
µ−1∑
k=1

ak

a0
< r2 ≤

µ∑
k=1

ak

a0
.
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Testosterone in Men’s Blood

? Approximately 90% to 95% of testosterone in men is produced by the
testes with typical blood testosterone levels in the range of 3 to 10 ng/mL.

? These levels have been experimentally observed to oscillate with a period
of about 2 to 3 hours.

? An imbalance can cause dramatic changes (mood, acne, and weight).

? Pathway is associated with many other important processes in the body.

? Pharmaceutical interests in chemical castration (Goserelin, Lupron, and
Depo-provera) and to create a male pill.
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The Hypothalmus-Pituitary-Testicular Axis
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The Hypothalmus-Pituitary-Testicular Axis

(Modified from Campbell, 1996.)
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The Hormone Secretion Signaling System

Pituitary

Testes

Hypothalamus

LH

GnRH

T

GnRH = Gonadotropin Releasing Hormone

LH = Luteinizing Hormone

T = Testosterone
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Experimental Observations

(Modified from Yen et al., 1999.)

(Modified from Naftolin et al., 1973.)
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The Deterministic Model

If we represent the concentrations of GnRH, LH, and T by R(t), L(t), and T(t),
respectively, then a proposed deterministic model of this system is

dR

dt
= f(T )− b1R

dL

dt
= g1R− b2L

dT

dt
= g2L− b3T
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The Deterministic Model

If we represent the concentrations of GnRH, LH, and T by R(t), L(t), and T(t),
respectively, then a proposed deterministic model of this system is

dR

dt
= f(T )− b1R

dL

dt
= g1R− b2L

dT

dt
= g2L− b3T

where
f(T ) =

A

K + T

and A, K, b1, b2, b3, g1, and g2 are all positive constants.
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History of the Model

? Goodwin (1964) first proposed the model to demonstrate oscillatory
behavior in enzymatic control processes.

? Smith (1980) studied slight variation involving a Hill coefficient in f(T ).

? Murray (1989) suggested using a time-delay in the production rate of T .

? Enciso and Sontag (2004) proved that the system has a globally stable
fixed point (regardless of the length of the time-delay) and therefore does
not have a limit cycle or sustained oscillations.

? More detailed (and more complicated) models include those by Cartwright
and Husain (1986) and Keenan et al. (1998 and 2000).
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A Stochastic Simulation of Hormone Secretion
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Simulation of hormone secretion for parameter values, A = 10−4, K = 10−7, b1 = 0.23,
b2 = 0.07, b3 = 0.1, g1 = 0.2618, and g2 = 0.9015. Average number of molecules are
represented by dashed lines; average R is 9.09, average L is 33.92, and average T is

300.07.
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A Stochastic Simulation of Hormone Secretion
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Two dimensional projections and three dimensional plot of simulation trajectory for the
physical parameter values, A = 10−4, K = 10−7, b1 = 0.23, b2 = 0.07, b3 = 0.1,

g1 = 0.2618, and g2 = 0.9015. Average number of molecules are represented by asterisks;
average R is 9.09, average L is 33.92, and average T is 300.07.
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Lomb Spectral Analysis
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The largest peak corresponds to a frequency of 2.3429× 10−4 Hz.
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The Switching Behavior
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Simulation to illustrate the the switching behavior. Parameter values are A = 10−1,
K = 10−4, b1 = 0.23, b2 = 0.032, b3 = 0.046, g1 = 0.2618, and g2 = 0.9015.
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Approximation Methods

? Gibson and Bruck (2000) proposed an approximation for systems in which
some reactions occur much more often than others by reducing the number
of random variables simulated.

? Gillespie (2001) introduced the τ -leap methods that make larger time steps
and allow more events to occur within those steps as long as changes in
the event probabilities stay within some tolerance.

? Burrage and Tian (2003) attempted to simulate continuous-time,
continuous-state, stochastic-approximation, models driven by Wiener noise
by introducing the framework of Poisson–Runge–Kutta methods.

? Turner, Schnell, and Burrage (2004) included fluctuations caused by the
structural organisation of the cytoplasm and the limited diffusion of
molecules due to macromolecular crowding.

? Burrage, Tian, and Burrage (2004) used multi-scale methods to incorporate
the quasi-steady-state assumption with slow, intermediate, and fast
reactions.
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Discussion of Stochastic Simulations

? When we are interested in the effects of intrinsic fluctuations and are not
able to obtain analytic results, we can rely on simulation methods such as
the Gillespie algorithm.

? These algorithms provide a more realistic representation of a system than
the deterministic, mass-action equations.

? By approaching the hormone model from a different physical basis we saw
how intrinsic fluctuations can incite oscillations for low numbers of
molecules.

? Even though the deterministic model has a globally stable fixed point, the
stochastic model was able to capture the pulsatile behavior of the blood
hormone levels.
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Outline

? Background and motivation for the new modeling methods.

? The grand canonical model.

? Stochastic simulation algorithms.

? Stoichiometric constraints-based optimization approaches.

? Conclusions.
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Stoichiometric Constraints-Based Approaches

? The mass-action models require detailed kinetic rate information, which, for
the most part, is not available from experiment.

? To address this problem, genome-scale constraints-based models have
been developed to describe the functional states, or phenotypes, of many
organisms (Westerhoff and Palsson, 2004).

? Stoichiometric Network Theory (SNT) uses the static, algebraic structure of
biochemical networks, within which chemical “motion” must take place.

? This method of anlysis has been successfully applied to systems such as
E. coli (Edwards and Palsson, 2000), mitochondrial energy metaboilsm
(Ramakrishna et al., 2001), and metabolism in hepatocyte cells (Beard and
Qian, 2005).
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Stoichiometric Network Theory

Returning to the general mass-action equation for a system of N species and
M reactions

dxi(t)
dt

=
M∑

j=1

(κj
i − νj

i )(k
j
+x

ν
j
1

1 x
ν

j
2

2 . . . x
ν

j
N

N − kj
−x

κ
j
1

1 x
κ

j
2

2 . . . x
κ

j
N

N )+Jext
i

we can rewrite the system of equations in matrix form as

dx
dt

= SJ + Jext.

Since this system is being driven by external fluxes, it will go to a NESS.
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Flux Balance Analysis

In NESS, the concentrations of the chemical species are not changing and we
have

SJ = −Jext,

which is known as the flux balance constraint of FBA. Note that this constraint
is similar to Kirchoff’s current law of electrical circuit theory.

Additional constraints can be applied to the NESS fluxes such as

Jj
lb ≤ Jj ≤ Jj

ub ∀j ∈ {1, 2, . . . ,M}

(Jext)i
lb ≤ (Jext)i ≤ (Jext)i

ub ∀i ∈ {1, 2, . . . , N}.
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Energy Balance Analysis

Define µ as the N -dimensional vector of chemical potentials, then the
M -dimensional vector of reaction potentials, ∆µ, is given by

STµ = ∆µ.

We can define the nullspace matrix K ∈ RM×(M−N−r) with columns that form
a basis for the nullspace of S, so that SK = 0. Then we have the constraint

KT STµ = KT∆µ = 0,

which is a constraint for the conservation of energy and is similar to Kirchoff’s
loop or voltage law of electrical circuit theory.
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Energy Balance Analysis

If we define the nonnegative forward and reverse reaction fluxes so that
J = J+ − J−, then the reaction potential is

∆µj = RT ln

(
Jj
−

Jj
+

)
,

which leads us directly to the second law of thermodynamics, i.e.,

−Jj∆µj = −RT
(
Jj

+ − Jj
−

)
ln

(
Jj
−

Jj
+

)
≥ 0.

Entropy must increase and the system must dissipate heat,

hdr = −JT∆µ > 0.
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The Optimization Problem

min
J,J+,J−,Jext,∆µ

f(J,J+,J−,Jext,∆µ)

s.t. SJ + Jext = 0

KT∆µ = 0

diag
(
e∆µ/RT

)
J+ − J− = 0

J− J+ + J− = 0

Jlb ≤ J ≤ Jub

0 ≤ J+ < ∞
0 ≤ J− < ∞

Jext
lb ≤ Jext ≤ Jext

ub

∆µlb ≤ ∆µ ≤ ∆µub
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Sequential Quadratic Programming

? We can solve the problem for any given, smooth, linear or nonlinear,
objective function using a Sequential Quadratic Programming (SQP)
algorithm.

? The basic idea of an SQP method is to step toward an optimal solution by
iteratively approximating the problem by quadratic subproblems.

? A simple interpretation of an SQP algorithm is to view it as an application of
Newton’s method to the Karush–Kuhn–Tucker optimality conditions, i.e.,

∇xL(x∗,λ∗) = ∇f(x∗)−
∑

i∈A(x∗)

λ∗i∇ci(x∗) = 0.
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The Quadratic Subproblem

Linearizing at the current iterate xk, we get the subproblem

min
p

1
2
pT Hkp +∇fT

k p

s.t. ∇ci(xk)Tp + ci(xk) = 0, i ∈ {1, 2, . . . ,m}

∇ci(xk)Tp + ci(xk) ≥ 0, i ∈ {m + 1, . . . , n},

which gives the search direction used to update the current iterate

xk+1 = xk + αk pk

by doing a line search.
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A Hypothetical Example

Consider

A + 2B 
 C

C + D 
 2A + 2B

A + B 
 2D

A + C 
 B + 3D

B 
 D,

for which

S =


−1 2 −1 −1 0
−2 2 −1 1 −1
1 −1 0 −1 0
0 −1 2 3 1

 and K =


−0.7163 −0.3345
−0.3205 −0.4347
0.4710 −0.6349
−0.3958 0.1001
−0.0752 0.5348


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A Hypothetical Example

Using FBA alone to maximize D output:

Case 1 Case 2
rxn J species Je rxn J species Je

1 0 A 1 1 0.05 A 10
2 0 B 0 2 10.09 B 20
3 1 C 0 3 20.17 C 20
4 0 D -1 4 9.96 D -90
5 -1 5 29.87
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A Hypothetical Example

Using FBA and EBA to maximize D output and minimize total energy:

rxn J J+ J− ∆µ Je species
1 -0.95 13.63 14.58 0.067 10 A
2 8.35 56.04 47.69 -0.161 20 B
3 16.94 113.85 96.91 -0.161 20 C
4 10.70 85.22 74.52 -0.134 -90 D
5 32.36 143.66 111.30 -0.255 hdr = 13.83
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A Hypothetical Example

Using FBA, EBA, and heat constraint to maximize D and minimize total
energy:

rxn J J+ J− ∆µ Je species
1 0.00 6.04 6.04 0.00 10 A
2 10.44 12.87 2.43 -1.67 20 B
3 21.33 22.12 0.79 -3.33 20 C
4 9.56 11.78 2.23 -1.67 -90 D
5 29.11 29.31 0.20 -5.00 hdr = 250
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Saccharomyces cerevisiae

Overall, the net reaction of fermentation is the convertion of glucose to ethanol
and carbon dioxide

C6H1206 −→ 2C2H5OH + 2CO2.

? Under anaerobic conditions, most of the energy from the sugar is
transferred to ethanol and growth of the yeast cells is minimized.

? Temperature is an important environmental factor for yeast because above
the optimal temperature of 30◦C, metabolism begins to slow, and when heat
begins to denature the proteins in the cell, metabolism decreases rapidly.

? Under anaerobic conditions with a complex medium and glucose as the
substrate, a continuous culture of S. cerevisiae has a specific rate of heat
production of 0.2 W · g−1.
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Saccharomyces cerevisiae
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Saccharomyces cerevisiae

rxn transport HK PGI PFK ALD TPI GAPDH
Vmin -24.3
Vmax 0.36 0.84 1.26 0.68 1.19 8.4 4.4
rxn PGK PGM ENO PYK PDC ADH

Vmin -4.8 -3.0
Vmax 9.4 1.35 4.05 0.65

(Teusink et al., 2000)

Reaction fluxes listed have units of (µmol ·min−1 ·mg protein−1) and
potentials have units of (J ·mol−1) and it is assumed that the temperature of
the system is 30◦C.
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unbranched branched
FBA FBA, EBA, & heat FBA FBA, EBA, & heat

rxn J J J+ J− ∆µ J J J+ J− ∆µ

transport 0.33 0.33 1.02 0.69 -971 0.36 0.36 0.75 0.39 -1659
HK 0.33 0.33 1.02 0.69 -971 0.36 0.36 0.75 0.39 -1658
PGI 0.33 0.33 1.02 0.69 -971 0.30 0.30 0.70 0.40 -1420
PFK 0.33 0.33 1.02 0.69 -971 0.30 0.30 0.70 0.40 -1422
ALD 0.33 0.33 1.02 0.69 -971 0.30 0.30 0.70 0.40 -1420
TPI 0.33 0.33 1.02 0.69 -971 0.23 0.23 0.64 0.41 -1126

GAPDH 0.65 0.65 1.21 0.56 -1943 0.54 0.53 0.87 0.34 -2379
PGK 0.65 0.65 1.21 0.56 -1943 0.54 0.53 0.87 0.34 -2379
PGM 0.65 0.65 1.21 0.56 -1943 0.54 0.53 0.87 0.34 -2380
ENO 0.65 0.65 1.21 0.56 -1943 0.54 0.53 0.87 0.34 -2378
PYK 0.65 0.65 1.21 0.56 -1943 0.54 0.53 0.87 0.34 -2377
PDC 0.65 0.65 1.21 0.56 -1943 0.54 0.53 0.87 0.34 -2377
ADH 0.65 0.65 1.21 0.56 -1943 0.51 0.51 0.85 0.35 -2270

ATPase 0.65 0.65 1.21 0.56 -1943 0.32 0.31 0.72 0.41 -1422
Glycogen - - - - - 0.02 0.02 0.25 0.23 -234
Trehalose - - - - - 0.02 0.02 0.23 0.21 -203
Glycerol - - - - - 0.07 0.07 0.41 0.34 -476

Succinate - - - - - 0.01 0.01 0.22 0.20 -166
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Discussion of Stoichiometric Constraints-Based
Approaches

? SNT has been shown to be a very accurate and useful tool for studying
mutant and disease affected organisms.

? By combining FBA and EBA constraints, we are certain that the feasible
solutions are mass balanced and thermodynamically realistic.

? Using an SQP to solve the optimization problem allows us to combine the
FBA and EBA constraints and consider objective functions many different
objective functions.

? This method allows us to study a system on the whole genome scale and
do in silico experiments instead of in vitro or in vivo experiments.
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Outline

? Background and motivation for the new modeling methods.

? The grand canonical model.

? Stochastic simulation algorithms.

? Stoichiometric constraints-based optimization approaches.

? Conclusions.
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Conclusions

? The classical methods for modeling biochemical networks are limited in
their power.

? The grand canonical model is able to capture intrinsic fluctuations and
provide analytic results for linear networks.

? Stochastic simulation approaches are able to capture intrinsic fluctuations
for more complicated systems, but no analytic results are available.

? Using stoichiometric constraints-based approaches, we are able to
quantitatively study the possible phenotypes of a system.

? It is clear that these new methods lead us toward to ultimate goal of
developing a complete model of a living organism.
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